An Updated Dust-to-Star Geometry: Dust Attenuation Does Not Depend on Inclination in $1.3\leq z\leq 2.6$ Star-Forming Galaxies from MOSDEF

arXiv (Cornell University)(2023)

引用 1|浏览1
暂无评分
摘要
We investigate dust attenuation and its dependence on viewing angle for 308 star-forming galaxies at $1.3\leq z\leq2.6$ from the MOSFIRE Deep Evolution Field (MOSDEF) survey. We divide galaxies with a detected H$\alpha$ emission line and coverage of H$\beta$ into eight groups by stellar mass, star formation rate (SFR), and inclination (i.e., axis ratio), then stack their spectra. From each stack, we measure Balmer decrement and gas-phase metallicity, then we compute median \AV and UV continuum spectral slope ($\beta$). First, we find that none of the dust properties (Balmer decrement, \AV, $\beta$) vary with axis ratio. Second, both stellar and nebular attenuation increase with increasing galaxy mass, showing little residual dependence on SFR or metallicity. Third, nebular emission is more attenuated than stellar emission, and this difference grows even larger at higher galaxy masses and SFRs. Based on these results, we propose a three-component dust model where attenuation predominantly occurs in star-forming regions and large, dusty star-forming clumps, with minimal attenuation in the diffuse ISM. In this model, nebular attenuation primarily originates in clumps, while stellar attenuation is dominated by star-forming regions. Clumps become larger and more common with increasing galaxy mass, creating the above mass trends. Finally, we argue that a fixed metal yield naturally leads to mass regulating dust attenuation. Infall of low-metallicity gas increases SFR and lowers metallicity, but leaves dust column density mostly unchanged. We quantify this idea using the Kennicutt-Schmidt and fundamental metallicity relations, showing that galaxy mass is indeed the primary driver of dust attenuation.
更多
查看译文
关键词
dust-to-star attenuation,inclination,star-forming
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要