Dividing Good and Better Items Among Agents with Bivalued Submodular Valuations

arXiv (Cornell University)(2023)

引用 0|浏览2
暂无评分
摘要
We study the problem of fairly allocating a set of indivisible goods among agents with {\em bivalued submodular valuations} -- each good provides a marginal gain of either $a$ or $b$ ($a < b$) and goods have decreasing marginal gains. This is a natural generalization of two well-studied valuation classes -- bivalued additive valuations and binary submodular valuations. We present a simple sequential algorithmic framework, based on the recently introduced Yankee Swap mechanism, that can be adapted to compute a variety of solution concepts, including max Nash welfare (MNW), leximin and $p$-mean welfare maximizing allocations when $a$ divides $b$. This result is complemented by an existing result on the computational intractability of MNW and leximin allocations when $a$ does not divide $b$. We show that MNW and leximin allocations guarantee each agent at least $\frac25$ and $\frac{a}{b+2a}$ of their maximin share, respectively, when $a$ divides $b$. We also show that neither the leximin nor the MNW allocation is guaranteed to be envy free up to one good (EF1). This is surprising since for the simpler classes of bivalued additive valuations and binary submodular valuations, MNW allocations are known to be envy free up to any good (EFX).
更多
查看译文
关键词
bivalued submodular
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要