Tibial cortex transverse transport accelerates wound healing via enhanced angiogenesis and immunomodulation

Ye Yang,Y. Li,Qi Pan, Shuangfeng Wang, Sang Wook Bai,Xiaohua Pan, King-Hwa Ling,Gang Li

Orthopaedic Proceedings(2023)

引用 11|浏览2
暂无评分
摘要
Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remain a challenge. A novel surgical technique named Tibial Cortex Transverse Transport has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In present study, we aimed to explore the wound healing effects after undergoing this novel technique via multiple ways. A novel rat model of Tibial Cortex Transverse Transport was established with a designed external fixator and effects on wound healing were investigated. All rats were randomized into 3 groups, with 12 rats per group: sham group (negative control), fixator group (positive control) and Tibial Cortex Transverse Transport group. Laser speckle perfusion imaging, vessel perfusion, histology and immunohistochemistry were used to evaluate the wound healing processes. Gross and histological examinations showed that Tibial Cortex Transverse Transport technique accelerated wound closure and enhanced the quality of the newly formed skin tissues. In Tibial Cortex Transverse Transport group, HE staining demonstrated a better epidermis and dermis recovery, while immune-histochemical staining showed that Tibial Cortex Transverse Transport technique promoted local collagen deposition. Tibial Cortex Transverse Transport technique also benefited to angiogenesis and immunomodulation. In Tibial Cortex Transverse Transport group, blood flow in the wound area was higher than that ofother groups according to laser speckle imaging with more blood vessels observed. Enhanced neovascularization was seen in the Tibial Cortex Transverse Transport group with double immune-labelling of CD31 and α-SMA. The M2 macrophages at the wound site in the Tibial Cortex Transverse Transport group was also increased. Tibial cortex transverse transport technique accelerated wound healing through enhanced angiogenesis and immunomodulation.
更多
查看译文
关键词
wound healing,enhanced angiogenesis,immunomodulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要