Molecular mechanisms of catalytic inhibition for active site mutations in glucose-6-phosphatase catalytic subunit 1 linked to glycogen storage disease

bioRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览1
暂无评分
摘要
Mediating the terminal reaction of gluconeogenesis and glycogenolysis, the integral membrane protein G6PC1 regulates hepatic glucose production by catalyzing hydrolysis of glucose-6-phosphate (G6P) within the lumen of the endoplasmic reticulum. Consistent with its vital contribution to glucose homeostasis, inactivating mutations in G6PC1 cause glycogen storage disease (GSD) type 1a characterized by hepatomegaly and severe hypoglycemia. Despite its physiological importance, the structural basis of G6P binding to G6PC1 and the molecular disruptions induced by missense mutations within the active site that give rise to GSD type 1a are unknown. Exploiting a computational model of G6PC1 derived from the groundbreaking structure prediction algorithm AlphaFold2 (AF2), we combine molecular dynamics (MD) simulations and computational predictions of thermodynamic stability with a robust in vitro screening platform to define the atomic interactions governing G6P binding as well as explore the energetic perturbations imposed by disease-linked variants. We identify a collection of side chains, including conserved residues from the signature phosphatidic acid phosphatase motif, that contribute to a hydrogen bonding and van der Waals network stabilizing G6P in the active site. Introduction of GSD type 1a mutations into the G6PC1 sequence elicits changes in G6P binding energy, thermostability and structural properties, suggesting multiple pathways of catalytic impairment. Our results, which corroborate the high quality of the AF2 model as a guide for experimental design and to interpret outcomes, not only confirm active site structural organization but also suggest novel mechanistic contributions of catalytic and non-catalytic side chains.
更多
查看译文
关键词
catalytic subunit,mutations,catalytic inhibition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要