The crossing number of the complete 4-partite graph $K_{1,1,m,n}$

Xiwu Yang, Nonghua Lü, Xiao Chen,Yuansheng Yang

arXiv (Cornell University)(2022)

引用 0|浏览0
暂无评分
摘要
Let $\textrm{cr}(G)$ denote the crossing number of a graph $G$. The well-known Zarankiewicz's conjecture (ZC) asserted $\textrm{cr}(K_{m,n})$ in 1954. In 1971, Harborth gave a conjecture (HC) on $\textrm{cr}(K_{x_1,...,x_n})$. HC on $K_{1,m,n}$ is verified if ZC is true by Ho et al. in 2021. In this paper, we showed the following results: If both $m$ and $n$ are even, then \[\textrm{cr}(K_{1,1,m,n})\geq \frac{1}{2}(\textrm{cr}(K_{m+1,n+3})+\textrm{cr}(K_{m+3,n+1})-mn-\frac{1}{4}(m^2+n^2));\] If both $m$ and $n$ are odd, then \[\textrm{cr}(K_{1,1,m,n})\geq \frac{1}{2}(\textrm{cr}(K_{1,m+1,n+1})+\textrm{cr}(K_{2,m,n})-\frac{1}{4}(m+1)(n+1)+1);\] If $m$ is even and $n$ is odd, then \begin{equation}\nonumber \begin{split} \textrm{cr}(K_{1,1,m,n})&\geq \frac{1}{4}(\textrm{cr}(K_{m+1,n+2})+\textrm{cr}(K_{m+3,n+2})+2\textrm{cr}(K_{2,m,n}) \\&-m(n+1)-\frac{1}{4}(n+1)^2). \end{split} \end{equation} The lower bounds in our result imply that if both $m$ and $n$ are even and ZC is true, then HC on $K_{1,1,m,n}$ holds; if at least one of $m$ and $n$ is odd and both ZC and HC on $K_{2,m,n}$ are true, then HC on $K_{1,1,m,n}$ holds.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要