Multilayer Perceptron Training Accelerator Using Systolic Array

IEICE Transactions on Information and Systems(2022)

引用 0|浏览2
暂无评分
摘要
Multilayer perceptron (MLP) is a basic neural network model that is used in practical industrial applications, such as network intrusion detection (NID) systems. It is also used as a building block in newer models, such as gMLP. Currently, there is a demand for fast training in NID and other areas. However, in training with numerous GPUs, the problems of power consumption and long training times arise. Many of the latest deep neural network (DNN) models and MLPs are trained using a backpropagation algorithm which transmits an error gradient from the output layer to the input layer such that in the sequential computation, the next input cannot be processed until the weights of all layers are updated from the last layer. This is known as backward locking. In this study, a weight parameter update mechanism is proposed with time delays that can accommodate the weight update delay to allow simultaneous forward and backward computation. To this end, a one-dimensional systolic array structure was designed on a Xilinx U50 Alveo FPGA card in which each layer of the MLP is assigned to a processing element (PE). The time-delay backpropagation algorithm executes all layers in parallel, and transfers data between layers in a pipeline. Compared to the Intel Core i9 CPU and NVIDIA RTX 3090 GPU, it is 3 times faster than the CPU and 2.5 times faster than the GPU. The processing speed per power consumption is 11.5 times better than that of the CPU and 21.4 times better than that of the GPU. From these results, it is concluded that a training accelerator on an FPGA can achieve high speed and energy efficiency.
更多
查看译文
关键词
systolic array,training
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要