Combined Steam and CO2 Reforming of Methane over the Hierarchical Ni-ZrO2 Nanosheets/Al2O3 Catalysts at Ultralow Temperature and under Low Steam

Wassachol Sumarasingha,Sabaithip Tungkamani,Tanakorn Ratana, Somsak Supasitmongkol,Monrudee Phongaksorn

ACS Omega(2023)

引用 0|浏览0
暂无评分
摘要
This research developed hierarchical 10 wt % Ni-1 wt % ZrO2/Al2O3 catalysts for combined steam and CO2 reforming of methane (CSCRM) reaction to produce syngas for gas-to-liquid (GTL) application under the ultralow temperature and low steam condition. The hierarchical nanosheet catalysts were prepared via a novel impregnation technique assisted by ammonia vapor diffusion with various times (1, 6, and 12 h) to develop the different magnitude of hierarchical nanosheets on the surface. Then, CSCRM at 600(degrees)C was performed on the catalysts for 6 h. The results evidenced the improvement of H-2 selectivity, reaching an appropriate H-2/CO ratio (1.9-2.0) in FT subunits in the GTL process when nanosheets existed on the surface due to the increase in H2O adsorption-dissociation sites. The good dispersion of hierarchical nanosheets accompanied by the ZrO2 promoter successfully enhanced the CH4 conversion and the coke prevention through the spread nanosheets because of the increase in the number of active sites and the surface interaction. The interaction of hierarchical nanosheets created the H2O activation-dissociation sites that allowed CO2 to be selective on the oxygen vacancy sites, producing more OH* and OH* on the catalyst surface to resist the carbon deposition during CSCRM operation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要