Efficient In Situ Sulfuration Process in Hydrothermally Deposited Sb2S3 Absorber Layers

ACS Applied Materials & Interfaces(2022)

引用 8|浏览3
暂无评分
摘要
Sulfuration plays a decisive role in enhancing crystal growth and passivate defects in the fabrication of high-efficiency metal-sulfide solar cells. However, the traditional sulfuration process always suffers from high-price professional equipment, tedious processes, low activity of S, or high toxicity of H2S. Here, we develop a desired in situ sulfuration by introducing tartaric acid additive into the hydrothermal deposition process of Sb2S3. Tartaric acid, sodium thiosulfate, and potassium antimony tartaric can form Sb2Sx-contained (x > 3) as-prepared films. Encouragingly, the annealing becomes an inspiring in situ sulfuration process, which can obtain a more compact absorber layer. In addition, the crystallinity and defect property of the Sb2S3 film are also improved significantly. Finally, we achieve a high-performance Sb2S3 solar cell with a power conversion efficiency of 6.31%, which shows an encouraging enhancement of ∼15% compared with the traditional hydrothermal process. This study provides an innovative way to prepare high-efficiency Sb2S3 solar cells and provides a desirable guide to realize the in situ sulfuration process.
更多
查看译文
关键词
situ sulfuration process,hydrothermally deposited sb<sub>2</sub>s<sub>3</sub>
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要