Mapping the sequence specificity of heterotypic amyloid interactions enables the identification of aggregation modifiers

Louros Nikolaos,Meine Ramakers,Emiel Michiels,Katerina Konstantoulea, Matteo Chiara, Gil Carvalho Teresa,Sam D, Gianfranco Andía Vera, Dominique Adriaens,Rousseau Frederic,Schymkowitz Joost

bioRxiv (Cold Spring Harbor Laboratory)(2021)

引用 0|浏览3
暂无评分
摘要
Abstract Heterotypic amyloid interactions between related protein sequences have been observed in functional and disease amyloids. While sequence homology seems to favour heterotypic amyloid interactions, we have no systematic understanding of the structural rules determining such interactions nor whether they inhibit or facilitate amyloid assembly. Using structure-based thermodynamic calculations and extensive experimental validation, we performed a comprehensive exploration of the defining role of sequence promiscuity in amyloid interactions. Using this knowledge, we demonstrate, using tau as a model system, that predicted cross-interactions driven by sequence homology indeed can modify nucleation, fibril morphology, kinetic assembly and cellular spreading of aggregates. We also find that these heterotypic amyloid interactions can result in the mis-localisation of brain-expressed protein sequences with prevalent activities in neurodegenerative disorders. Our findings suggest a structural mechanism by which the proteomic background can modulate the aggregation propensity of amyloidogenic proteins and discuss how such sequence-specific proteostatic perturbations could contribute to the selective cellular susceptibility of amyloid disease progression.
更多
查看译文
关键词
heterotypic amyloid interactions,aggregation modifiers,sequence specificity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要