Preliminary experiments into colonization of microorganisms from activated sludge on different types of plastics

Acta Biologica Slovenica(2020)

引用 0|浏览3
暂无评分
摘要
The presence of plastics in the environment is currently one of the most pressing global environmental problems. Microorganisms start to form biofilms on plastic surfaces when they first come in contact with the biosphere; however, these interactions and processes are little understood, especially in freshwaters. This study aimed to better understand the colonization process of microorganisms from activated sludge on plastic materials exhibiting different surface characteristics. We inoculated synthetic fabric (PET), water bottles (PET), and plastic bags for packing vegetables and fruits (HDPE) with microorganisms from activated sludge. Mixtures of plastics and activated sludge, as well as the control, were incubated at 22-24°C in Bushnell Haas (BH) liquid medium and shaken at 120 rpm for two months. The mixtures were sub-sampled weekly and seeded into fresh BH medium with test plastic materials to avoid feeding microorganisms on dead biomass. The colonization was followed by measuring optical density (OD600) of liquid medium, by measurements of isotopic composition of carbon (δ13C) in untreated and treated plastic materials and, with in-specting the plastics surface with scanning electron microscopy (SEM). Overall, the study confirmed differences between colonizing microorganisms on different plastic material when comparing SEM micrographs of materials from the flasks inoculated with activated sludge. The texture of the HDPE bag changed during the experiment in both, control and inoculated flasks, but it is not clear whether the observed changes were due to abiotic or biotic factors. We concluded that microorganisms from activated sludge are capable of colonizing both PET and HDPE materials, and biofilm formation is most probably influenced by the chemical composition of plastics and their surface characteristics.
更多
查看译文
关键词
sludge,microorganisms,plastics,colonization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要