A New Randomized Primal-Dual Algorithm for Convex Optimization with Optimal Last Iterate Rates

arXiv (Cornell University)(2020)

引用 0|浏览4
暂无评分
摘要
We develop a novel unified randomized block-coordinate primal-dual algorithm to solve a class of nonsmooth constrained convex optimization problems, which covers different existing variants and model settings from the literature. We prove that our algorithm achieves optimal $\mathcal{O}(n/k)$ and $\mathcal{O}(n^2/k^2)$ convergence rates (up to a constant factor) in two cases: general convexity and strong convexity, respectively, where $k$ is the iteration counter and n is the number of block-coordinates. Our convergence rates are obtained through three criteria: primal objective residual and primal feasibility violation, dual objective residual, and primal-dual expected gap. Moreover, our rates for the primal problem are on the last iterate sequence. Our dual convergence guarantee requires additionally a Lipschitz continuity assumption. We specify our algorithm to handle two important special cases, where our rates are still applied. Finally, we verify our algorithm on two well-studied numerical examples and compare it with two existing methods. Our results show that the proposed method has encouraging performance on different experiments.
更多
查看译文
关键词
convex optimization,primal-dual
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要