Quantum cryptography with highly entangled photons from semiconductor quantum dots

arXiv (Cornell University)(2020)

引用 0|浏览0
暂无评分
摘要
State-of-the-art quantum key distribution systems are based on the BB84 protocol and single photons generated by lasers. These implementations suffer from range limitations and security loopholes, which require expensive adaptation. The use of polarization entangled photon pairs substantially alleviates the security threads while allowing for basically arbitrary transmission distances when embedded in quantum repeater schemes. Semiconductor quantum dots are capable of emitting highly entangled photon pairs with ultra-low multi-pair emission probability even at maximum brightness. Here we report on the first implementation of the BBM92 protocol using a quantum dot source with an entanglement fidelity as high as 0.97(1). For a proof of principle, the key generation is performed between two buildings, connected by 350 metre long fiber, resulting in an average key rate of 135 bits/s and a qubit error rate of 0.019 over a time span of 13 hours, without resorting to time- or frequency-filtering techniques. Our work demonstrates the viability of quantum dots as light sources for entanglement-based quantum key distribution and quantum networks. By embedding them in state-of-the-art photonic structures, key generation rates in the Gbit/s range are at reach.
更多
查看译文
关键词
entangled photons,semiconductor quantum dots,quantum dots
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要