Assessing the Quality of Cotranscriptional Folding Simulations

bioRxiv (Cold Spring Harbor Laboratory)(2020)

引用 0|浏览0
暂无评分
摘要
Abstract Structural changes in RNAs are an important contributor to controlling gene expression not only at the post-transcriptional stage but also during transcription. A subclass of riboswitches and RNA thermometers located in the 5’ region of the primary transcript regulates the downstream functional unit – usually an ORF – through premature termination of transcription. Such elements not only occur naturally but they are also attractive devices in synthetic biology. The possibility to design such riboswitches or RNA thermometers is thus of considerable practical interest. Since these functional RNA elements act already during transcription, it is important to model and understand the dynamics of folding and, in particular, the formation of intermediate structures concurrently with transcription. Cotranscriptional folding simulations are therefore an important step to verify the functionality of design constructs before conducting expensive and labour-intensive wet lab experiments. For RNAs, full-fledged molecular dynamics simulations are far beyond practical reach both because of the size of the molecules and the time scales of interest. Even at the simplified level of secondary structures further approximations are necessary. The BarMap approach is based on representing the secondary structure landscape for each individual transcription step by a coarse-grained representation that only retains a small set of low-energy local minima and the energy barriers between them. The folding dynamics between two transcriptional elongation steps is modeled as a Markov process on this representation. Maps between pairs of consecutive coarse-grained landscapes make it possible to follow the folding process as it changes in response to transcription elongation. In its original implementation, the BarMap software provides a general framework to investigate RNA folding dynamics on temporally changing landscapes. It is, however, difficult to use in particular for specific scenarios such as cotranscriptional folding. To overcome this limitation, we developed the user-friendly BarMap-QA pipeline described in detail in this contribution. It is illustrated here by an elaborate example that emphasizes the careful monitoring of several quality measures. Using an iterative workflow, a reliable and complete kinetics simulation of a synthetic, transcription regulating riboswitch is obtained using minimal computational resources. All programs and scripts used in this contribution are free software and available for download as a source distribution for Linux ® , or as a platform-independent Docker ® image including support for Apple macOS ® and Microsoft Windows ® .
更多
查看译文
关键词
simulations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要