Cr3+?Fe3+ Energy Transfer Offset Enabling Anti-Thermal Quenching Near-Infrared Emission for Coded Wireless-Communication Applications

Laser & Photonics Reviews(2023)

引用 0|浏览7
暂无评分
摘要
Broadband near-infrared (NIR) emission phosphors are crucial for the construction of next-generation smart lighting sources; however, the thermal quenching (TQ) issue poses a significant challenge to their applications. In this study, anti-TQ NIR emission is demonstrated in hexafluoride phosphors, using a facile Cr3+/Fe3+ co-doping strategy. Owing to the controlled forward resonance energy transfer (ET) from Cr3+ to Fe3+ and one-phonon-assisted back ET from Fe3+ to Cr3+, the thermally enhanced broadband NIR luminescence is realised in series of fluoride such as Na3FeF6:Cr3+, Na3GaF6:Cr3+, Fe3+, K2NaScF6:Cr3+, Fe3+, etc. By varying the chemical composition of the phosphor, the anti-TQ emission is achieved even upon raising the temperature to approximate to 423 K. The anti-TQ luminescence mechanism is investigated, and the ET offset effect on luminescence TQ is demonstrated. More importantly, by combining these phosphors with blue InGaN chip, anti-/zero-TQ NIR light emitting diodes with a high photoelectric conversion efficiency even up to 19.13%@20 mA are further fabricated to realize the emerging coded optical wireless-communication applications. These findings can initiate the exploration of NIR phosphors with anti-TQ luminescence properties for advanced optoelectronic applications.
更多
查看译文
关键词
anti-thermal quenching,Cr3+/Fe3+,energy transfer offset,LEDs,near-infrared
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要