Mitotic chromosomes harbor cell type and species-specific structural features within a universal looping architecture

biorxiv(2023)

引用 0|浏览2
暂无评分
摘要
The architecture of mammalian mitotic chromosomes is considered to be universal across species and cell types. However, some studies suggest that features of mitotic chromosomes might be cell type or species specific. We previously reported that CTCF binding in human differentiated cell lines is lost in mitosis, whereas mouse embryonic stem cells (mESC) display prominent binding at a subset of CTCF sites in mitosis. Here, we perform parallel footprint ATAC-seq data analyses of mESCs and somatic mouse and human cells to further explore these differences. We then investigate roles of mitotically bound (bookmarked) CTCF in prometaphase chromosome organization by Hi-C. We do not find any remaining interphase structures such as TADs or CTCF loops at mitotically bookmarked CTCF sites in mESCs. This suggests that mitotic loop extruders condensin I and II are not blocked by bound CTCF, and thus that any remaining CTCF binding does not alter mitotic chromosome folding. Lastly, we compare mitotic Hi-C data generated in this study in mouse with publicly available data from human and chicken cell lines. We do not find any cell type specific differences; however, we do find a difference between species. The average genomic size of mitotic loops is much smaller in chicken (200-350 kb), compared to human (500-750 kb) and mouse (1-2 mb). Interestingly, we find that this difference in loop size is correlated with the average genomic length of the q-arm in these species, a finding we confirm by microscopy measurements of chromosome compaction. This suggests that the dimensions of mitotic chromosomes can be modulated through control of sizes of loops generated by condensins to facilitate species-appropriate shortening of chromosome arms. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要