Experimental and Numerical Investigations on Flexible Paraffin/Fiber Composite Phase Material

JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS(2023)

引用 0|浏览9
暂无评分
摘要
A flexible paraffin/hollow fiber phase change composite was prepared using a simple impregnation method, and the thermal-release performance of a piece of woven paraffin/hollow fiber rectangular blocks was systematically investigated using experimental and numerical methods. The experimental results of the thermal-release performance were highly consistent with the numerical results. Consequently, the thermal-release performance, including the available energy and solidification time, of the paraffin/hollow fiber with different melting temperatures, mass fractions (corresponding to the enthalpy), specific heat, and thermal conductivity were numerically investigated. The available energy of the paraffin/hollow fiber completely depends on the mass fraction of the paraffin. The solidification time mainly depends on the mass fraction of the paraffin and secondarily on the thermal conductivity, while the specific heat has little effect on the solidification time. Therefore, the thermal-release performance of the paraffin/hollow fiber could be optimized through numerical simulation by altering the solidification temperature, mass fraction, thermal conductivity, and specific heat.
更多
查看译文
关键词
phase change compound,hollow cored fibers,heat energy discharge performances,available energies,solidification time,energy efficiency,melting and solidification,thermophysical properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要