Manipulating Nonlinear Photocurrent from Interlayer Coupling in Bilayer Metamaterials for Polarized Terahertz Generation

ANNALEN DER PHYSIK(2023)

引用 0|浏览2
暂无评分
摘要
Polarized terahertz (THz) wave generation is of great significance for chiral and anisotropic sensing applications. However, how to manipulate amplitude, polarization, and ellipticity of the THz generation is still a fundamental challenge. Herein, polarized THz wave generation is achieved from a bilayer metamaterial consisting of T-shaped structure (TSS) and split resonator rings (SRRs) by combining Maxwell and hydrodynamic equations. The elliptically polarized THz wave can be synthetized directly from horizontally and vertically polarized THz components due to the orthogonal nonlinear photocurrents along the arm-directions of TSS and SRRs, respectively. Besides, the ellipticity and the orientation angle of the THz polarization ellipse can be modulated by the twist angle between the SRRs and TSS layers. The maximum ellipticity can reach 0.34 while the orientation angle is tunable from -0.45 to 0.48 pi by tuning the twist angle. This work proposes an interlayer coupling method for the polarized THz sources based on metamaterials in potential circular dichroism and chiral sensing applications. The polarized THz wave generation is achieved from a bilayer metamaterial consisting of T-shaped structure (TSS) and split resonator rings (SRRs) by combining Maxwell and hydrodynamic equations. The ellipticity and the orientation angle of the THz polarization ellipse can be modulated by the twist angle between the SRRs and TSS layers.image
更多
查看译文
关键词
bilayer metamaterials,terahertz,interlayer coupling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要