Time-course adaption strategy of Tetraselmis-based consortia in response to 17-ethinylestradiol

JOURNAL OF HAZARDOUS MATERIALS(2024)

引用 0|浏览6
暂无评分
摘要
Estuarine ecosystem constitutes a microenvironment where the abundant green microalga Tetraselmis sp. coexists with 17 alpha-ethinylestradiol (EE2) pollution. However, the adaption mechanisms of this microalga-based consortia under EE2 shock are rarely recognized. Using extracellular polymeric substance (EPS) characterization, flow cytometry and transcriptomic, this study reveals the time-course response of Tetraselmis-based consortia under EE2 stress. Compared to the insignificant effect of 0.5 mg/L, a high dose of 2.5 mg/L EE2 induces persistent production of reactive oxygen species (ROS) and transiently physiological damages (membrane, chloroplast, organelle morphogenesis, and DNA replication), resulting in cell cycle alteration and division inhibition. These damages could be recovered through active DNA repair and persistently detoxifying processes of enhanced metabolism and ROS quenching. The enhanced EPS production is observed and in line with the significant up-regulation of most key enzymes involved in precursor synthesis and polysaccharides assembling. However, the up-regulation of glycoside hydrolases and most glycosyltransferases, down-regulation of flippases and changed expression of ABC family members indicate the changed EPS composition and synthesis strategy. The resulting increased colloidal polysaccharide is further consumed by associated bacteria whereas protein remains in the co-cultures. These results provide deeper insights into the adverse effects of chemical compounds to microalgae-bacteria and their coadaptation ability.
更多
查看译文
关键词
Tetraselmis chuii,Reactive oxygen species,DNA damage and repair,Extracellular polymeric substances,Transcriptomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要