Allocholic acid protects against -naphthylisothiocyanate-induced cholestasis in mice by ameliorating disordered bile acid homeostasis

Xue Han, Chuyi Lin, Huijie Liu,Shan Li,Bei Hu,Lei Zhang

JOURNAL OF APPLIED TOXICOLOGY(2024)

引用 0|浏览2
暂无评分
摘要
Cholestasis is a pathological condition characterized by disruptions in bile flow, leading to the accumulation of bile acids (BAs) in hepatocytes. Allocholic acid (ACA), a unique fetal BA known for its potent choleretic effects, reappears during liver regeneration and carcinogenesis. In this research, we investigated the protective effects and underlying mechanisms of ACA against mice with cholestasis brought on by alpha-naphthylisothiocyanate (ANIT). To achieve this, we combined network pharmacology, targeted BA metabolomics, and molecular biology approaches. The results demonstrated that ACA treatment effectively reduced levels of serum AST, ALP, and DBIL, and ameliorated the pathological injury caused by cholestasis. Network pharmacology analysis suggested that ACA primarily regulated BA and salt transport, along with the signaling pathway associated with bile secretion, to improve cholestasis. Subsequently, we examined changes in BA metabolism using UPLC-MS/MS. The findings indicated that ACA pretreatment induced alterations in the size, distribution, and composition of the liver BA pool. Specifically, it reduced the excessive accumulation of BAs, especially cholic acid (CA), taurocholic acid (TCA), and beta-muricholic acid (beta-MCA), facilitating the restoration of BA homeostasis. Furthermore, ACA pretreatment significantly downregulated the expression of hepatic BA synthase Cyp8b1, while enhancing the expression of hepatic efflux transporter Mrp4, as well as the renal efflux transporters Mdr1 and Mrp2. These changes collectively contributed to improved BA efflux from the liver and enhanced renal elimination of BAs. In conclusion, ACA demonstrated its potential to ameliorate ANIT-induced liver damage by inhibiting BA synthesis and promoting both BA efflux and renal elimination pathways, thus, restoring BA homeostasis.
更多
查看译文
关键词
allocholic acid,bile acid homeostasis,cholestasis,network pharmacology,alpha-Naphthylisothiocyanate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要