Bimetallic Pd-Sn Catalytic Electrodes from Deep Eutectic Solvents for Selective Nitrate Reduction Toward Nitrogen

ADVANCED SUSTAINABLE SYSTEMS(2023)

引用 0|浏览0
暂无评分
摘要
Nitrate is one of the most widespread water contaminants globally. Nitrate levels in groundwater and surface water can rise to unhealthy levels as a result of nitrogen fertilizer runoff from lawns and farms. This research aims to selectively convert nitrate to gaseous nitrogen using Palladium-Tin (Pd-Sn) bimetallic electrodes electrodeposited on stainless-steel (SS). Inductively coupled plasma optical emission spectrometry, scanning electron microscope, and X-ray diffraction are used to analyze the composition, surface morphology, and crystal structure of the electrodes. The XRD analysis reveals that the Pd-Sn/SS electrode has a crystalline nature when a Pd molar ratio >0.5 while an amorphous phase is detected over a Pd molar ratio (<= 0.5). The electrochemical nitrate reduction is carried out in a 0.1 M HClO4 / 8 mM NaNO3 solution for 5 h using electrodes prepared in deep eutectic solvent (DES) system. The Pd0.93Sn0.07/SS electrode shows the best catalytic performance in terms of high nitrate conversion of 97%, N-2 selectivity of 88%, and N-2 yield of 86% compared to counter electrodes. These findings demonstrate a considerable impact of the electrode preparation process on nitrogen conversion, selectivity, and yield.
更多
查看译文
关键词
deep eutectic solvents,human health,nitrate reduction,nitrogen,water treatments
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要