Ultrafast Coherent Energy Transport of Fenna-Matthews-Olson Complex in a 3D Photonic Lattice

JOURNAL OF PHYSICAL CHEMISTRY C(2023)

引用 0|浏览0
暂无评分
摘要
The coherent energy transport phenomenon inside the light-harvesting antenna like the Fenna-Matthews-Olson (FMO) complex has always been vital and attractive but elusive to investigate directly due to the complex organisms and the ultrafast transport process. Therefore, researchers have focused on the interaction of the FMO complex as a whole with the environment or the theoretical study of its dynamics. Here, we experimentally verify the theoretical system of ultrafast coherent energy transport among seven chlorophyll molecules within FMO with a three-dimensional photonic lattice directly written by the femtosecond laser to intuitively uncover the dynamic process between chlorophyll molecules under both neighboring and non-neighboring interactions. The high similarities between the theoretical and experimental results demonstrate the precise positional layout control of the photonic lattices. These achievements will lead to a deep understanding of the mechanism and promising applications in the construction of more efficient integrated optical devices for artificial light energy transport.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要