The Synergistic Effect of GH13 and GH57 GBEs of Petrotoga mobilis Results in α-Glucan Molecules with a Higher Branch Density.

Polymers(2023)

引用 0|浏览2
暂无评分
摘要
Glycogen is a biopolymer consisting of glycosyl units, with a linear backbone connected by α-1,4-linkages and branches attached via α-1,6-linkages. In microorganisms, glycogen synthesis involves multiple enzymes, with glycogen branching enzymes (GBEs) being vital for creating α-1,6-linkages. GBEs exist in two families: glycoside hydrolase (GH) 13 and GH57. Some organisms possess either a single GH13 or GH57 GBE, while others, such as Petrotoga mobilis, have both types of GBEs. In this study, the simultaneous use of a GH13 and GH57 GBE each from Petrotoga mobilis for α-glucan modification was investigated using a linear maltodextrin substrate with a degree of polymerization of 18 (DP18). The products from modifications by one or both GBEs in various combinations were analyzed and demonstrated a synergistic effect when both enzymes were combined, leading to a higher branch density in the glycogen structure. In this cooperative process, PmGBE13 was responsible for creating longer branches, whereas PmGBE57 hydrolyzed these branches, resulting in shorter lengths. The combined action of the two enzymes significantly increased the number of branched chains compared to when they acted individually. The results of this study therefore give insight into the role of PmGBE13 and PmGBE57 in glycogen synthesis, and show the potential use of both enzymes in a two-step modification to create an α-glucan structure with short branches at a high branch density.
更多
查看译文
关键词
glycogen branching enzyme,alpha-1,4-transglycosylation,branching activity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要