From Epidemiology of Community-Onset Bloodstream Infections to the Development of Empirical Antimicrobial Treatment-Decision Algorithm in a Region with High Burden of Antimicrobial Resistance

Darunee Chotiprasitsakul,Akeatit Trirattanapikul, Warunyu Namsiripongpun, Narong Chaihongsa,Pitak Santanirand

ANTIBIOTICS-BASEL(2023)

引用 0|浏览1
暂无评分
摘要
Antimicrobial-resistant (AMR) infections have increased in community settings. Our objectives were to study the epidemiology of community-onset bloodstream infections (BSIs), identify risk factors for AMR-BSI and mortality-related factors, and develop the empirical antimicrobial treatment-decision algorithm. All adult, positive blood cultures at the emergency room and outpatient clinics were evaluated from 08/2021 to 04/2022. AMR was defined as the resistance of organisms to an antimicrobial to which they were previously sensitive. A total of 1151 positive blood cultures were identified. There were 450 initial episodes of bacterial BSI, and 114 BSIs (25%) were AMR-BSI. Non-susceptibility to ceftriaxone was detected in 40.9% of 195 E. coli isolates and 16.4% among 67 K. pneumoniae isolates. A treatment-decision algorithm was developed using the independent risk factors for AMR-BSI: presence of multidrug-resistant organisms (MDROs) within 90 days (aOR 3.63), prior antimicrobial exposure within 90 days (aOR 1.94), and urinary source (aOR 1.79). The positive and negative predictive values were 53.3% and 83.2%, respectively. The C-statistic was 0.73. Factors significantly associated with 30-day all-cause mortality were Pitt bacteremia score (aHR 1.39), solid malignancy (aHR 2.61), and urinary source (aHR 0.30). In conclusion, one-fourth of community-onset BSI were antimicrobial-resistant, and one-third of Enterobacteriaceae were non-susceptible to ceftriaxone. Treatment-decision algorithms may reduce overly broad antimicrobial treatment.
更多
查看译文
关键词
bacteremia,antimicrobial resistance,epidemiology,community,Asia
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要