Intelligent Setpoint Optimization for a Range Extender Hybrid Electric Vehicle With Opposed Piston Engine

Journal of Dynamic Systems, Measurement, and Control(2023)

引用 0|浏览1
暂无评分
摘要
Abstract This paper presents the exploration and optimization of a hybridized opposed piston (OP) engine. In this work, the exhaust crankshaft lead (ECL) is introduced as a controllable parameter in the hybridized OP engine enabled by eliminating the conventional geartrain linking the two crankshafts of an OP engine. This allows for variation in the effective compression and expansion ratio of the engine, along with scavenging performance. This novel control actuator as well as the adjustable speed and load setpoint in a series hybrid OP engine powertrain architecture necessitates an intensive calibration effort to realize any possible efficiency improvements. However, the OP engine within this series hybrid powertrain does not need to operate in highly transient conditions, but rather its operating point is fixed or slowly varying. This property permits the use of online calibration techniques. After manually sweeping speed and ECL values at two power setpoints, the use of an extremum-seeking type intercycle optimization algorithm to optimize the operating setpoint is validated, showing that near optimal speed and ECL setpoints can be selected despite the relatively flat operating map of the OP engine.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要