Catalytic effect in lithium metal batteries: From heterogeneous catalyst to homogenous catalyst

JOURNAL OF ENERGY CHEMISTRY(2024)

引用 0|浏览9
暂无评分
摘要
Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity. Toward the broader implementation, the primary obstacle lies in the intricate multi-electron, multi-step redox reaction associated with sluggish conversion kinetics, subsequently giving rise to a cascade of parasitic issues. In order to smooth reaction kinetics, catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier. Over past decades, a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration, and thus the great progress in electrochemical performance has been realized. Therefore, it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway. In this review, the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described. The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well. Finally, the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond. This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery, thus opening new avenue for sustainable solution to climate change, energy and environmental issues, and the potential industrial economy.CO 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
更多
查看译文
关键词
Energy storage and conversion,Metal battery,Sulfur battery,Air battery,Catalytic effect,Heterogeneous catalyst,Homogeneous catalyst
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要