Change of dominant material properties in laser perforation process with high-energy lasers up to 120 kilowatt

Scientific Reports(2023)

引用 0|浏览0
暂无评分
摘要
In laser materials processing, energy losses due to reflection, heat conduction and thermal radiation play an important role. In this publication, we show that with increasing laser intensity, the energy lost within the sample becomes less important for metal perforation processes. We compare the laser-matter interaction of aluminum and steel plates. Material parameters such as density, melting point and especially thermal conductivity differ strongly, leading to much longer perforation times for aluminum in comparison to steel at laser powers of 20 kW. However, this behavior changes at laser powers of more than 80 kW where the perforation times of aluminum become shorter than the corresponding times for steel. By comparing experimental data and simulations, we conclude that thermal conduction is the dominant factor of energy loss at low powers, but is reduced at high laser powers.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要