Matrix in River Water, Sediments, and Biofilms Mitigates Mercury Toxicity to Medaka (Oryzias Latipes)

ENVIRONMENTAL SCIENCE & TECHNOLOGY(2023)

引用 0|浏览1
暂无评分
摘要
Impacts of an environmental matrix on mercury (Hg) bioavailability and toxicity to medaka (Oryzias latipes) were investigated in matrix-free controls and treatments with a stepwise increased environmental matrix of river water, sediments, and biofilms. Generally, river water enhanced but the presence of sediments and biofilms reduced Hg bioavailability to medaka up to 10(5) times, so that Hg-total concentrations/amounts among different environmental media cannot mirror Hg availability and toxicity to medaka. On average, 12.9 and 12.4% of Hg in medaka was, respectively, methylated to methylmercury (MeHg) in matrix-free and -containing treatments, indicating no influence of the environmental matrix on Hg methylation in medaka. All oxidative stress, inflammatory injury, and malformation parameters correlated strongly and significantly with Hg-total and MeHg concentrations in medaka, notably with steeper slopes in matrix-free controls than in matrix-containing treatments, highlighting that the environmental matrix mitigated Hg and MeHg toxicity to medaka. Moreover, oxidative stress was more strongly mitigated than inflammatory injury according to the stronger decreases of the regression line slopes from matrix-free to -containing treatments. Here, we have newly identified that the potential of the environmental matrix to decrease Hg bioavailability and mitigate Hg toxicity to fish together could buffer Hg ecotoxicity in the aquatic environment.
更多
查看译文
关键词
mercury,methylmercury,environmental matrix,mitigating effect,oxidative stress,inflammatoryinjury,medaka,sediment and biofilm
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要