Strain-Induced Defect Evolution for the Construction of Porous Cu2-x Se with Enhanced Thermoelectric Performance

ACS applied materials & interfaces(2023)

引用 0|浏览3
暂无评分
摘要
Superionic Cu2-xSe, with disordered and even liquid-like Cu ions, has been extensively studied as a high efficiency thermoelectric material. However, the relationship between lattice stability and microstructure evolution in Cu2-xSe under strain, which is crucial for its application, has seldom been explored in previous research. In this study, we investigate the impacts of hydrostatic compression strain on the microstructural evolution and, consequently, its implications for thermoelectric performance. Molecular dynamics (MD) simulations show that high hydrostatic compression strain could induce local diffusion of Cu ions and Se twin evolution, resulting in the breaking and reforming of Cu-Se dynamic bonds and the unstable Se sublattice. The subsequent annealing process of the destabilized structure promoted Se evaporation from the sublattice and resulted in lotus-seedpod-like pores. The reduced sound velocity and intensified phonon scattering, due to pores, lead to a reduction in the lattice thermal conductivity from 0.44 W m(-1) K-1 to 0.24 W m(-1) K-1 at 800 K, a decrease of approximately 45%, in the porous Cu1.92Se sample. These findings reveal the relationship between stability and defect evolution in Cu2-xSe under high hydrostatic compression, offering a straightforward strategy of defect engineering for designing unique microstructures by leveraging the instability in superionic conductor materials.
更多
查看译文
关键词
Cu2-x Se thermoelectric materials,defect evolution,tunable lattice stability,pores,lattice thermal conductivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要