In Situ Raman Spectroscopic Studies of Liquid Carbon Tetrachloride (CCl4) Under Static and Laser-Driven Shock Compression

Applied Spectroscopy(2019)

引用 3|浏览0
暂无评分
摘要
High pressure (up to ∼2.2 GPa) Raman scattering studies were performed in carbon tetrachloride (CCl4) under static and dynamic compressions using diamond anvil cell (DAC) and laser-driven shock methods, respectively, and their results are compared. The laser-driven shock experiments were conducted in a glass-confined target geometry. The symmetric stretching mode ν1, symmetric bending mode ν2, and asymmetric bending mode ν4 blueshifts with pressure. Mode Gruneisen parameters were obtained for the above Raman modes. Time-resolved Raman spectroscopic (TRRS) studies were performed under laser-driven shock compression at different delay times. Shock velocity deduced from the intensity ratios of Raman signal scattered from unshocked and shocked regions of symmetric stretching mode is in agreement with the one obtained from one-dimensional hydrodynamic simulations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要