Indent

Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design(2022)

引用 0|浏览0
暂无评分
摘要
The performance and energy efficiency potential of heterogeneous architectures has fueled domain-specific systems-on-chip (DSSoCs) that integrate general-purpose and domain-specialized hardware accelerators. Decision trees (DTs) perform high-quality, low-latency task scheduling to utilize the massive parallelism and heterogeneity in DSSoCs effectively. However, offline trained DT scheduling policies can quickly become ineffective when applications or hardware configurations change. There is a critical need for runtime techniques to train DTs incrementally without sacrificing accuracy since current training approaches have large memory and computational power requirements. To address this need, we propose INDENT, an incremental online DT framework to update the scheduling policy and adapt it to unseen scenarios. INDENT updates DT schedulers at runtime using only 1--8% of the original training data embedded during training. Thorough evaluations with hardware platforms and DSSoC simulators demonstrate that INDENT performs within 5% of a DT trained from scratch using the entire dataset and outperforms current state-of-the-art approaches.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要