System reliability-based robust design of deep foundation pit considering multiple failure modes

GEOSCIENCE FRONTIERS(2024)

引用 0|浏览2
暂无评分
摘要
Recently, reliability-based design is a universal method to quantify negative influence of uncertainty in geotechnical engineering. However, for deep foundation pit, evaluating the system safety of retaining structures and finding cost-effective design points are main challenges. To address this, this study proposes a novel system reliability-based robust design method for retaining system of deep foundation pit and illustrated this method via a simplified case history in Suzhou, China. The proposed method included two parts: system reliability model and robust design method. Back Propagation Neural Network (BPNN) is used to fit limit state functions and conduct efficient reliability analysis. The common source random variable (CSRV) model are used to evaluate correlation between failure modes and determine the system reliability. Furthermore, based on the system reliability model, a robust design method is developed. This method aims to find cost-effective design points. To solve this problem, the third generation non-dominated genetic algorithm (NSGA-III) is adopted. The efficiency and accuracy of whole computations are improved by involving BPNN models and NSGA-III algorithm. The proposed method has a good performance in locating the balanced design point between safety and construction cost. Moreover, the proposed method can provide design points with reasonable stiffness distribution. (c) 2023 China University of Geosciences (Beijing) and Peking University. Published by Elsevier B.V. on behalf of China University of Geosciences (Beijing). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
System reliability,Machine learning method,Non-dominated sorting genetic algorithm,Robust design,Multiple objective optimization models
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要