Alkali activated materials with recycled unplasticised polyvinyl chloride aggregates for sand replacement

CONSTRUCTION AND BUILDING MATERIALS(2023)

引用 0|浏览4
暂无评分
摘要
Incorporating recycled Unplasticised Polyvinyl Chloride (UPVC) aggregates into Alkali Activated Materials (AAMs) presents a promising approach to alleviate the environmental drawbacks associated with conventional recycling methods for UPVC. The distinctive characteristics of UPVC aggregates, as compared to natural sand, pose a challenge in the pursuit of enhancing the mechanical properties of composites. This research aims to achieve net-zero goals and promote circular economy principles by replacing traditional Portland cement (OPC) with low-carbon AAMs and natural aggregates with recycled unplasticised polyvinyl chloride (UPVC) which, accounts for 12% of global plastic production. Coarse and fine UPVC aggregates, measuring 4-6 mm and 0-2 mm, respectively, were incorporated into AAMs. An extensive array of tests was performed to assess their environmental benefits and overall performance enhancements. The results unveiled notable advantages in terms of thermal resistivity and resistance to chloride penetration in the UPVC-infused AAMs. Notably, mixtures containing 100% fine UPVC aggregates exhibited a remarkable 70% reduction in thermal conductivity (0.465 W/ mk) when compared to the control. In mechanical assessments, composites containing fine UPVC aggregates surpassed those with coarse UPVC aggregates, showcasing promise for load-bearing applications. Substituting 30% of both fine and coarse UPVC aggregates with sand yielded impressive 7-day compressive strengths of 41 MPa and 35 MPa, respectively. Moreover, the utilisation of energy-dispersive X-ray spectroscopy confirmed the absence of chloride leaching after three months. The incorporation of UPVC waste aggregates led to a significant reduction in the carbon footprint of the tested AAMs. In conclusion, these composites offer an appealing and sustainable solution for both load-bearing and non-load-bearing structures.
更多
查看译文
关键词
Alkali activated materials,Unplasticised polyvinyl chloride,Aggregates,Mechanical properties,Durability,Carbon footprint
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要