Autoignition of cyclohexane at low-to-intermediate temperatures: Rapid compression machine experiments and improved comprehensive chemical kinetic model

COMBUSTION AND FLAME(2024)

引用 0|浏览3
暂无评分
摘要
Cycloalkanes are an important class of hydrocarbons found in conventional and alternative transportation fuels. Being one of the simplest practical cycloalkanes, cyclohexane is often used as a surrogate in studies to understand the oxidation, ignition, and sooting characteristics of cycloalkanes more broadly. Although cyclohexane has been extensively studied, very limited datasets for cyclohexane oxidation at low-to-intermediate temperatures are available in the literature. Moreover, the literature autoignition data from rapid compression machines (RCMs) did not provide information on volume histories or experimental heat transfer characteristics which can significantly impact model predictions, thereby hindering the detailed validation of chemical kinetic models. It has also been observed that the cyclohexane kinetic models developed so far are not able to predict the literature data across a wide range of operating and mixture conditions. Hence, further studies are recommended to understand and improve model predictions for cyclohexane oxidation. In this study, RCM experiments were conducted using cyclohexane/air mixtures at varying compressed pressures (PC =15, 20, and 30 bar), equivalence ratios (phi=0.5, 1.0, and 2.0), and compressed temperatures (TC=670-960 K). The current RCM results of cyclohexane were found to complement well with the literature data, with the first-stage IDTs at high pressures and volume histories at all test conditions being first reported for better development and validation of chemical kinetic models. In addition, a detailed chemical kinetic model for the cyclohexane oxidation has been developed and validated using both newly acquired experimental IDTs in this study and literature experimental studies (IDTs in RCMs and STs, species profiles in jet-stirred reactors, and laminar burning velocities). Unlike literature models, the proposed model was observed to provide an overall better prediction for experimental results over a wide range of conditions. Chemical kinetic analysis of the developed model was further conducted to identify the reaction pathways controlling the autoignition of cyclohexane.
更多
查看译文
关键词
Cycloalkane,Cyclohexane,Rapid compression machine,Autoignition,Chemical kinetic model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要