Unconventional magneto-transport properties of the layered antiferromagnet Fe1/3NbS2

Applied Physics Letters(2022)

引用 0|浏览0
暂无评分
摘要
Recently, magnetically intercalated layered transition metal dichalcogenide Fe1/3NbS2 has attracted considerable attention due to its promise for spintronics applications, especially for the demonstration of reversible resistance switching by electrical stimulation below the antiferromagnetic transition temperature. Magneto-transport properties and their correlation to the underlying magnetic configurations are yet to be clarified in Fe1/3NbS2. Herein, we investigate the magneto-transport behavior of antiferromagnet Fe1/3NbS2, demonstrating a complex behavior of the magnetoresistance and unconventional Hall effect. The resistance of this compound displayed metallic behavior and an abrupt decrease at TN. Of particular interest, the positive magnetoresistance is enhanced and it reaches a maximum in the vicinity of Néel temperature as a function of the out-of-plane magnetic field, which is in contrast to most of the antiferromagnets. Meanwhile, the Hall signal showed an unusual nonlinear field-dependence in the same temperature range. Moreover, the magnetoresistance exhibits a significant anisotropy, up to 14% near the Néel temperature. We attributed these unconventional magneto-transport behaviors to the field induced formation of a complex spin texture in Fe1/3NbS2. Our work motivates further efforts on antiferromagnetic spintronic devices based on this intercalated layered transition metal dichalcogenide.
更多
查看译文
关键词
antiferromagnet,magneto-transport
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要