Additional glial cell line-derived neurotrophic factor in vitro promotes the proliferation of undifferentiated spermatogonia from sterile cattleyak

Peng Zhang,Kemin Jing, Yuan Tian, Yuqian Li,Zhixin Chai,Xin Cai

ANIMAL REPRODUCTION SCIENCE(2024)

引用 0|浏览0
暂无评分
摘要
Cattleyak is a typically male sterile species. The meiosis process is blocked and the scarcity of spermatogenic stems cells are both contributing factors to the inability of male cattleyak to produce sperm. While Glial cell line-derived neurotrophic factor (GDNF) is the first discovered growth factor known to promote the proliferation and self-renewal of spermatogenic stem cells, its relationship to the spermatogenesis arrest of cattleyak remains unclear. In this report, we studied the differential expression of GDNF in the testis of yak and cattleyak, and discussed the optimal concentration of GDNF in the culture medium of undifferentiated spermatogonia (UDSPG) of cattleyak in vitro and the effect of GDNF on the proliferation of cattleyak UDSPG. The results indicated that GDNF expression in the testicular tissue of cattleyak was inferior to that of yak. Moreover, the optimum value for the UDSPG in vitro culture was determined to be 20-30 ng/mL for cattleyak. In vitro, the proliferation activity of UDSPG was observed to increase with additional GDNF due to the up-regulation of proliferation-related genes and the down-regulation of differentiation-related genes. We hereby report that the scarcity of cattleyak UDSPG is due to insufficient expression of GDNF, and that the addition of GDNF in vitro can promote the proliferation of cattleyak UDSPG by regulating the expression of genes related to proliferation and differentiation. This work provides a new insight to solve the issue of spermatogenic arrest in cattleyak.
更多
查看译文
关键词
GDNF,UDSPG,Proliferation,Cattleyak,Spermatogenesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要