A Survey of CNN-Based Approaches for Crack Detection in Solar PV Modules: Current Trends and Future Directions

Sharmarke Hassan,Mahmoud Dhimish

Solar(2023)

引用 0|浏览1
暂无评分
摘要
Detection of cracks in solar photovoltaic (PV) modules is crucial for optimal performance and long-term reliability. The development of convolutional neural networks (CNNs) has significantly improved crack detection, offering improved accuracy and efficiency over traditional methods. This paper presents a comprehensive review and comparative analysis of CNN-based approaches for crack detection in solar PV modules. The review discusses various CNN architectures, including custom-designed networks and pre-trained models, as well as data-augmentation techniques and ensemble learning methods. Additionally, challenges related to limited dataset sizes, generalizability across different solar panels, interpretability of CNN models, and real-time detection are discussed. The review also identifies opportunities for future research, such as the need for larger and more diverse datasets, model interpretability, and optimized computational speed. Overall, this paper serves as a valuable resource for researchers and practitioners interested in using CNNs for crack detection in solar PV modules.
更多
查看译文
关键词
photovoltaic,crack detection,artificial intelligence,convolutional neural networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要