Nonreciprocal reflection based on asymmetric metasurfaces

OPTICS EXPRESS(2023)

引用 0|浏览4
暂无评分
摘要
We propose a scheme to achieve controllable nonreciprocal behavior in asymmetric graphene metasurfaces composed of a continuous graphene sheet and a poly crystalline silicon slab with periodic grooves of varying depths on each side. The proposed structure exhibits completely asymmetric reflection in opposite directions in the near-infrared range, which is attributed to the pronounced structural asymmetry and its accompanying nonlinear effects. The obtained nonreciprocal reflection ratio, reaching an impressive value of 21.27 dB, combined with a minimal insertion loss of just-0.76 dB, highlights the remarkable level of nonreciprocal efficiency achieved by this design compared to others in its category. More importantly, the proposed design can achieve dynamic tunability by controlling the incident field intensity and the graphene Fermi level. Our design highlights a potential means for creating miniaturized and integratable nonreciprocal optical components in reflection mode, which can promote the development of the integrated isolators, optical logic circuits, and bias-free nonreciprocal photonics. (c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要