Nitrogen, sulfur-doped carbon quantum dots with large Stokes shift for real-time monitoring of pH in living cells

TALANTA(2024)

引用 0|浏览2
暂无评分
摘要
Construction of carbon quantum dots-based (CQDs) fluorescent probes for real-time monitoring pH in cells is still unsatisfied. Here, we propose the synthesis of nitrogen, sulfur-doped CQDs (N,S-CQDs) using one-pot hydrothermal treatment, and serve it as fluorescent probes to realize the real-time sensing of intracellular pH. These pH-responsive N,S-CQDs were proved exhibited a diversity of admirable properties, including great photostability, nontoxicity, favorable biocompatibility, and high selectivity. Particularly, due to the doping of nitrogen and sulfur, N,S-CQDs possessed long-wavelength emission and large Stokes Shift (190 nm), which could avoid self-absorption of tissue to realize high contrast and resolution bioimaging. The response of the probes to pH showed a good linear in range of 0.93-7.00 with coefficient of determination of 0.9956. Moreover, with advantages of high signal-to-noise ratio and stability against photobleaching, the as-prepared N,S-CQDs were successfully applied to monitor pH in living cells via bioimaging. All findings suggest that N,S-CQDs have significant potential for practical application for sensing and visualizing pH fluctuation in living systems.
更多
查看译文
关键词
Nitrogen,Sulfur-doped carbon quantum dots,pH-sensitive fluorescent probes,Large Stokes shift,Real-time monitoring,Bioimaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要