Wrinkle Structure Regulating Electromagnetic Parameters in Constructed Core-shell ZnFe2O4@PPy Microspheres as Absorption Materials.

Small (Weinheim an der Bergstrasse, Germany)(2023)

引用 0|浏览5
暂无评分
摘要
Structure engineering of magnetic-dielectric multi-components is emerging as an effective approach for presuming high-performance electromagnetic (EM) absorption, but still faces bottlenecks due to the ambiguous regulation mechanism of surface morphology. Here, a novel wrinkled surface structure is tailored on the ZnFe2O4 microsphere via a spray-pyrolysis induced Kirkendall diffusion effect, the conductivity of the sample is affected, and a better impedance matching is adjusted by modulating the concentration of metal nitrate precursors. Driven by a vapor phase polymerization, conductive polypyrrole (PPy) shell are in situ decorated on the ZnFe2O4 microsphere surfaces, ingeniously constructing a core-shell ZnFe2O4@PPy composites. Moreover, a systematic investigation reveals that this unique wrinkled surface structure is highly dependent on the metal salt concentration. Optimized wrinkle ZnFe2O4@PPy composite exhibits a minimum reflection loss (RLmin) reached -41.0 dB and the effective absorption bandwidth (EAB) can cover as wide as 4.1 GHz. The enhanced interfacial polarization originated from high-density ZnFe2O4-PPy heterostructure, and the conduction loss of PPy contributes to the boosted dielectric loss capability. This study gives a significant guidance for preparing high-performance EM composites by tailoring the surface wrinkle structure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要