Development of Eco-Friendly and High-Strength Foam Sensors Based on Segregated Elastomer Composites with a Large Work Range and High Sensitivity.

ACS applied materials & interfaces(2023)

引用 0|浏览1
暂无评分
摘要
Achieving a high-strength piezoresistive foam with high sensitivity and a large workable range remains a major challenge. To realize these goals, we developed a facile, novel, and eco-friendly strategy for constructing segregated microcellular structures fabricated using coating, heat compression molding, and supercritical CO2 (ScCO2) foaming. The segregated poly(ether block amide) (PEBA)/carbon nanostructure (CNS) composites were fabricated via compression molding. This effectively improved the foamability and cell morphology of PEBA/CNS composites. Moreover, compared with the randomly distributed structure, the segregated structure also endowed the foams with better conductivity and sensing capability. Subsequently, the ScCO2 foaming was employed to fabricate segregated PEBA/CNS composite foams. The foaming gave composites a large compressibility and reduced their percolation threshold. Under 1 wt % CNS loading, via tuning the expansion ratio of foam from ∼2.1 to 4.1, the compression stress at 50% compression strain of foam varied from ∼3.3 to 0.5 MPa, and the conductivity changed from 4.89 × 10-3 to 1.93 × 10-6 s/m, implying a tunable conductivity. Additionally, the adjustable conductivity enabled the sensitivity of segregated composite foams to be regulated. The segregated PEBA/CNS foam (FCNS1-4.1) exhibited a good combination of high sensitivity (GF = 3.5), large work range (80% strain), and high compression strength (∼0.5 MPa at 50% strain) as well as a stable, reproducible, and durable sensing response under a low CNS content (∼0.11 vol %). Furthermore, the ΔI/I0 of FCNS1-4.1 (75.6% porosity) reached a high value of ∼810 and exhibited an ultrahigh sensitivity of ∼3706 (ΔI/I0ε) from 60 to 80% strain. Moreover, the foam sensor could be used as a sensing function sole for monitoring diverse human motions. Therefore, the segregated PEBA/CNS composite foams with outstanding piezoresistive performances show promising potential applications in monitoring human motions as wearable electronics and provides a new design strategy for a new generation of foam sensors with high performance.
更多
查看译文
关键词
segregated structure,ScCO2 foaming,piezoresistive foam,adjustability,high sensitivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要