Learning deep representation and discriminative features for clustering of multi-layer networks

NEURAL NETWORKS(2024)

引用 0|浏览6
暂无评分
摘要
The multi-layer network consists of the interactions between different layers, where each layer of the network is depicted as a graph, providing a comprehensive way to model the underlying complex systems. The layer-specific modules of multi-layer networks are critical to understanding the structure and function of the system. However, existing methods fail to characterize and balance the connectivity and specificity of layer-specific modules in networks because of the complicated inter-and intra-coupling of various layers. To address the above issues, a joint learning graph clustering algorithm (DRDF) for detecting layer-specific modules in multi-layer networks is proposed, which simultaneously learns the deep representation and discriminative features. Specifically, DRDF learns the deep representation with deep nonnegative matrix factorization, where the high -order topology of the multi-layer network is gradually and precisely characterized. Moreover, it addresses the specificity of modules with discriminative feature learning, where the intra-class compactness and inter-class separation of pseudo-labels of clusters are explored as self-supervised information, thereby providing a more accurate method to explicitly model the specificity of the multi-layer network. Finally, DRDF balances the connectivity and specificity of layer-specific modules with joint learning, where the overall objective of the graph clustering algorithm and optimization rules are derived. The experiments on ten multi-layer networks showed that DRDF not only outperforms eight baselines on graph clustering but also enhances the robustness of algorithms.
更多
查看译文
关键词
Multi-layer networks,Discriminative feature learning,Deep matrix factorization,Graph clustering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要