Active elite rugby participation is associated with altered precentral cortical thickness

BRAIN COMMUNICATIONS(2023)

引用 0|浏览0
暂无评分
摘要
There is growing concern that elite rugby participation may negatively influence brain health, but the underlying mechanisms are unclear. Cortical thickness is a widely applied biomarker of grey matter structure, but there is limited research into how it may be altered in active professional rugby players. Cross-sectional MRI data from 44 active elite rugby players, including 21 assessed within 1 week of head injury, and 47 healthy controls were analysed. We investigated how active elite rugby participation with and without sub-acute traumatic brain injury influenced grey matter structure using whole cortex and region of interest cortical thickness analyses. Relationships between cortical thickness and biomarkers of traumatic brain injury, including fractional anisotropy, plasma neurofilament light and glial fibrillary acidic protein, were also examined. In whole-cortex analyses, precentral cortical thickness in the right hemisphere was lower in rugby players compared with controls, which was due to reductions in non-injured players. Post hoc region of interest analyses showed non-injured rugby players had reduced cortical thickness in the inferior precentral sulcal thickness bilaterally (P = 0.005) and the left central sulcus (P = 0.037) relative to controls. In contrast, players in the sub-acute phase of mild traumatic brain injury had higher inferior precentral sulcal cortical thickness in the right hemisphere (P = 0.015). Plasma glial fibrillary acidic protein, a marker of astrocyte activation, was positively associated with right inferior precentral sulcal cortical thickness in injured rugby players (P = 0.0012). Elite rugby participation is associated with localized alterations in cortical thickness, specifically in sulcal motor regions. Sub-acute changes after mild traumatic brain injury are associated with evidence of astrocytic activation. The combination of cortical thickness and glial fibrillary acidic protein may be useful in understanding the pathophysiological relationship between sporting head injury and brain health. There is concern that elite rugby participation adversely influences brain health. Parker et al. show that in-game head injury may lead to localized cortical swelling that correlates with a marker of astrocytic activation, whereas the same region exhibit reductions in cortical thickness that may occur in the longer term. Graphical Abstract
更多
查看译文
关键词
rugby,head injury,cortical thickness,MRI,GFAP
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要