STAR-RIS Enhanced Finite Blocklength Transmission for Uplink NOMA Networks

IEEE TRANSACTIONS ON COMMUNICATIONS(2024)

引用 0|浏览4
暂无评分
摘要
A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) assisted uplink non-orthogonal multiple access (NOMA) framework for finite blocklength (FBL) transmission is proposed. Considering the different communication requirements of Internet of Things devices (IoTDs), a novel design to achieve high-rate and low-error is proposed. Two operating protocols for STAR-RIS are considered, namely energy splitting (ES) and mode switching (MS). 1) For STAR-RIS with ES, an alternating optimization (AO) algorithm is proposed to handle the highly-coupled mixed integer programming problem. More particularly, a low-complexity received-signal-strength-based device pairing scheme is proposed. Based on the given device pair, the closed-form solutions for the power allocation problem are obtained. The transmitting and reflecting coefficient optimization problem is solved by exploiting the successive convex approximation and semidefinite relaxation methods. 2) For STAR-RIS with MS, a double-layer penalty-based (DLPB) algorithm is proposed to tackle the newly introduced binary amplitude constraints. Numerical results reveal that: i) the proposed AO and DLPB algorithms can converge within a few iteration times; ii) the FBL transmission performance can be improved by employing the proposed STAR-RIS framework compared with conventional transmitting/reflecting-only RISs; iii) NOMA is capable of enhancing FBL rate while guaranteeing the reliability constraints compared with orthogonal multiple access.
更多
查看译文
关键词
NOMA,Internet of Things,Uplink,Protocols,Reliability,Optimization,Switches,Finite blocklength (FBL) transmission,Internet of Things (IoT),non-orthogonal multiple access (NOMA),simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要