The impact of dissolved organic matter on the photodegradation of tetracycline in the presence of microplastics.

Chemosphere(2023)

引用 0|浏览0
暂无评分
摘要
Microplastics (MPs), an emerging class of pollutants, significantly impact the photoconversion dynamics of tetracycline (TC). But the effect of prevalent dissolved organic matter (DOM) on TC photodegradation in the presence of MPs remains a gap in current research. In this study, the photoconversion behavior and mechanism of TC under simulated sunlight conditions were systematically investigated, both in the presence of DOM and in combination with polystyrene (PS) MPs. The results demonstrated that both DOM and MPs enhanced the photodegradation of TC when compared to its direct degradation. However, DOM, particularly humic acid (HA, 10 mg/L), exhibited a more pronounced enhancing effect on TC photodegradation within 1 h reaction, regardless of the presence or absence of MPs, reaching up to 80%. In reaction systems involving TC-HA and TC-HA-PS, the primary contributors to TC degradation were direct photolysis and HA photosensitization (free radical reactions). Conversely, photosensitization effects were not significant in the presence of fulvic acid (FA). Furthermore, even under dark reaction conditions, HA exhibited a 10% degradation effect on TC. Quenching experiments and electron spin resonance (ESR) results indicate that dark reaction processes involve free radical reactions. Additionally, toxicity test results showed a reduction in the acute toxicity of TC photodegradation products, yet the long-term cumulative risks to organisms deserved attention. In general, this investigation significantly advances our understanding of the intricate photoconversion behavior of TC in the presence of coexisting chemical components.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要