Landau Singularities Revisited: Computational Algebraic Geometry for Feynman Integrals.

Physical review letters(2024)

引用 0|浏览2
暂无评分
摘要
We reformulate the analysis of singularities of Feynman integrals in a way that can be practically applied to perturbative computations in the standard model in dimensional regularization. After highlighting issues in the textbook treatment of Landau singularities, we develop an algorithm for classifying and computing them using techniques from computational algebraic geometry. We introduce an algebraic variety called the principal Landau determinant, which captures the singularities even in the presence of massless particles or UV/IR divergences. We illustrate this for 114 example diagrams, including a cutting-edge 2-loop 5-point nonplanar QCD process with multiple mass scales.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要