Exciting high-frequency short-wavelength spin waves using high harmonics of a magnonic cavity mode

arxiv(2023)

引用 0|浏览2
暂无评分
摘要
Confined spin-wave modes are a promising object for studying nonlinear effects and future quantum technologies. Here, using micromagnetic simulations, we use a microwave magnetic field from a coplanar waveguide (CPW) to pump a standing spin-wave confined in the cavity of magnonic crystal. We find that the frequency of the fundamental cavity mode is equal to the ferromagnetic resonance frequency of the plane film and overlaps with the magnonic bandgap, allowing high magnetic field tunability. Multi-frequency harmonics of the cavity mode are generated once the microwave amplitude surpasses a certain threshold. Specifically, the second and third harmonics at 0.5 T equate to 48.6 and 72.9 GHz with wavelengths of 44 and 22 nm respectively, which propagate into the crystal. This effect reaches saturation when the CPW covers the entire cavity, making the system feasible for realization. These processes show potential for the advancement of magnonics at high-frequencies and very short-wavelengths.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要