Associations between age-related differences in occipital alpha power and the broadband parameters of the EEG power spectrum: A cross-sectional cohort study

INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY(2024)

引用 0|浏览3
暂无评分
摘要
In adulthood, neurological structure and function are often affected by aging, with negative implications for daily life as well as laboratory-based tasks. Some of these changes include decreased efficiency modulating cortical activity and lower signal-to-noise ratios in neural processing (as inferred from surface electroencephalography). To better understand mechanisms influencing age-related changes in cortical activity, we explored the effects of aging on narrow-band alpha power (7.5-12.5 Hz) and broadband/aperiodic components that span a wider range (1.5-30.5 Hz) over the occipital region during eyes-open and eyes-closed wakeful rest in 19 healthy young adults (18-35 years) and 21 community-dwelling older adults (59+ years). Older adults exhibited a smaller change in alpha power across conditions compared to younger adults. Older adults also showed flatter aperiodic slopes in both conditions. These changes in narrow-band alpha are consistent with previous work and suggest that older adults may have a reduced ability to modulate state-specific activity. Differences in the aperiodic slope suggest age-related changes in the signal-noise-ratio in cortical oscillations. However, the relationship between narrowband alpha modulation and the aperiodic slope was unclear, warranting further investigation into how these variables relate to each other in the aging process. In summary, aging is associated with a broadband flattening of the EEG power spectrum and reduced state-specific modulation of narrow-band alpha power, but these changes appear to be (at least partially) independent of each other. The present findings suggest that separate mechanisms may underlie age-related differences in aperiodic power and narrow-band oscillations.
更多
查看译文
关键词
Electroencephalography (EEG),Aging,Neural noise,Alpha modulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要