PGPR-Soil Microbial Communities' Interactions and Their Influence on Wheat Growth Promotion and Resistance Induction against Mycosphaerella graminicola

BIOLOGY-BASEL(2023)

引用 0|浏览5
暂无评分
摘要
The efficiency of plant-growth-promoting rhizobacteria (PGPR) may not be consistently maintained under field conditions due to the influence of soil microbial communities. The present study aims to investigate their impact on three PGPR-based biofertilizers in wheat. We used the PGPR Paenibacillus sp. strain B2 (PB2), PB2 in co-inoculation with Arthrobacter agilis 4042 (Mix 2), or with Arthrobacter sp. SSM-004 and Microbacterium sp. SSM-001 (Mix 3). Inoculation of PB2, Mix 2, and Mix 3 into non-sterile field soil had a positive effect on root and aboveground dry biomass, depending on the wheat cultivar. The efficiency of the PGPR was further confirmed by the protection they provided against Mycosphaerella graminicola, the causal agent of Septoria leaf blotch disease. PB2 exhibited protection of >= 37.8%, while Mix 2 showed >= 47.9% protection in the four cultivars tested. These results suggest that the interactions between PGPR and native soil microbial communities are crucial for promoting wheat growth and protection. Additionally, high-throughput sequencing of microbial communities conducted 7 days after PGPR inoculations revealed no negative effects of PB2, Mix 2, and Mix 3 on the soil microbial community structure. Interestingly, the presence of Arthrobacter spp. appeared to mitigate the potential negative effect of PB2 on bacterial community and foster root colonization by other beneficial bacterial strains.
更多
查看译文
关键词
Mycosphaerella graminicola,Paenibacillus sp. strain B2,Arthrobacter spp.,Microbacterium spp.,PGPR co-inoculation,induced systemic resistance,growth promotion,soil microbial communities
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要