The Expression of Two Distinct Sets of Glycolytic Enzymes Reveals Differential Effects of Glycolytic Reprogramming on Pancreatic Ductal Tumorigenesis in Mice

Biomedicines(2023)

引用 0|浏览0
暂无评分
摘要
Pancreatic ductal adenocarcinoma (PDAC) is associated with enhanced aerobic glycolysis through elevated glucose uptake and the upregulated expression of genes encoding rate-limiting glycolytic enzymes. However, the direct impact of altered glycolytic pathways on pancreatic tumor progression has not been thoroughly investigated. Here, we utilized two strains of BAC transgenic mice with pancreatic expression of two distinct sets of glycolytic genes each arranged in a polycistronic fashion (PFKFB3-HK2-GLUT1 and LDHA-PDK1, respectively) to investigate the role of altered glycolysis on the development of pancreatic ductal tumor development in the Pdx1-Cre; LSL-KrasG12D mice. The overexpression of the two sets of glycolytic genes exhibited no significant effects on tumor development in the 4-5-month-old mice (the PanIN2 lesions stage). In the 9-10-month-old mice, the overexpression of PFKFB3-HK2-GLUT1 significantly accelerated PanIN3 progression, exhibiting elevated levels of ductal cell marker CK19 and tumor fibrosis. Surprisingly, the overexpression of LDHA-PDK1 significantly attenuated the progression of PanIN3 in the 9-10-month-old mice with significantly downregulated levels of CK19 and fibrosis. Therefore, distinct set of glycolytic enzymes that are involved in different glycolytic routes exhibited contrasting effects on pancreatic ductal tumor development depending on the tumor stages, providing novel insights into the complexity of the glycolytic pathway in the perspective of PDAC development and therapy.
更多
查看译文
关键词
pancreatic cancer, PDAC, PanINs, glycolysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要