Comparative Trophic Levels of Phragmocone-Bearing Cephalopods (Nautiloids, Ammonoids, and Sepiids)

INTEGRATIVE AND COMPARATIVE BIOLOGY(2023)

引用 0|浏览1
暂无评分
摘要
Cephalopods are among many marine animals that through some combination of habit and/or habitat have proven difficult to study, especially understanding their trophic positions in marine communities. Stable isotope analyses have provided powerful tools for discovering quantitative aspects about the ecology and food sources of many cephalopod species. Here, we present new gut content and isotopic data (carbon and nitrogen isotopes) from phragmocone-bearing cephalopods (both ectocochleates, as well as those with internal, hard part buoyancy maintenance apparatuses). To this, we also include observations from baited remote underwater video systems to describe feeding habits and potential prey types to correlate with gut contents analyses. These data come from extant Allonautilus, Nautilus, and Sepia species, as well as from extinct nautiloids and ammonites. Extant nautiloids occupy a different isotopic niche than all other cephalopod groups where such data have been published to date. We conclude that these species are obligate scavengers rather than predators on any living species in their environments. Extant Nautilus and Allonautilus also demonstrate different patterns of functional allometry of nitrogen isotope values over ontogeny than do most other cephalopods (or animals in general), by showing decreasing nitrogen isotope levels during ontogeny. This pattern is shown to be different in Sepia and the yet small number of ammonite cephalopods studied to date, supporting the increasingly accepted view that ammonites were far closer to coleoids in basic biology than nautiloids. Overall, phragmocone-bearing cephalopods appear fundamentally different ecologically than cephalopods without this kind of buoyancy system. Of these groups, nautiloids appear to live a low-energy existence that allows them to subsist on energy-poor food sources, such as crustacean molts, as well as being able to scavenge in low oxygen basins where rare food falls, such as dead fish, remain unobtainable by most other animals.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要